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The lattice Boltzmann method is a microscopic-based approach for solving the
fluid flow problems at the macroscopic scales. The presently popular method uses
regularly spaced lattices and cannot handle curved boundaries with desirable flex-
ibility. To circumvent such difficulties, a finite difference-based lattice Boltzmann
method (FDLBM) in curvilinear coordinates is explored using body-fitted coordi-
nates with non-uniform grids. Several test cases, including the impulsively started
cylindrical Couette flow, steady state cylindrical Couette flow, steady flow over flat
plates, and steady flow over a circular cylinder, are used to examine various issues
related to the FDLBM. The effect of boundary conditions for the distribution func-
tions on the solution, the merits between second-order central difference and upwind
schemes for advection terms, and the effect of the Reynolds number are investigated.
Favorable results are obtained using FDLBM in curvilinear coordinates, indicat-
ing that the method is potentially capable of solving finite Reynolds number flow
problems in complex geometries.c© 1998 Academic Press

1. INTRODUCTION

There has been rapid development of the Lattice Boltzmann method (LBM) as an alterna-
tive numerical method for simulating fluid dynamics problems [4]. In traditional numerical
methods, the macroscopic variables, such as velocity and density, are obtained by solving the
Navier–Stokes (NS) equations. The LBM solves the microscopic kinetic equation for par-
ticle distribution functionfi from which the macroscopic quantities (velocity and density)
are obtained through moment integration offi . In the kinetic equation forfi (see Eq. (1)),
the advection operator is linear in the phase space while the convection term is non-linear in
the NS equations. A BGK type simple relaxation process in the kinetic equation allows the
recovery of the non-linear convection in the NS equations through the multi-scale expan-
sion. In the nearly incompressible flow limit, the NS equations are recovered. In particular,
the pressure is typically obtained by solving the Poisson equation (or an equivalent one)

426

0021-9991/98 $25.00
Copyright c© 1998 by Academic Press
All rights of reproduction in any form reserved.



         

THE LATTICE BOLTZMANN METHOD 427

derived from the incompressible NS equations which can be time consuming. In LBM, the
pressure is obtained through an extremely simple equation of state [6],p= ρc2

s, in whichρ

is the fluid density andcs is the speed of sound. This is a quite appealing feature of the LBM.
The discretized equation forfi is explicit and easy to implement in parallel processing. At
low Reynolds number, LBM can handle very complex geometry such as multiphase flow
in porous media or through small holes [4].

The Boltzmann equation governing the velocity distribution functionf (t, c, x) may be
written, with a single relaxation timeτ , as

∂ f

∂t
+ c · ∇ f = −1

τ
( f − f eq), (1a)

where f eq is the equilibrium distribution. After discretizing the velocity spacec into various
directions, the Boltzmann equation for the velocity distribution functionfi may be written
as

∂ fi

∂t
+ ci · ∇ fi = −1

τ

(
fi − f eq

i

)
(i = 0, 1, . . . , 8 for 2-D) (1b)

[1, 3, 8] where f eq
i is the equilibrium distribution offi chosen to satisfy the NS equation

andci is the lattice velocity in thei th-direction. In a 2-D, 9-speed square lattice,

ci = (cos((i − 1)π/4), sin((i − 1)π/4)) for i = 1, 3, 5, 7,

ci =
√

2(cos((i − 1)π/4), sin((i − 1)π/4)) for i = 2, 4, 6, 8, and c0 = 0.

It is noted that Eq. (1b) is one of numerous possible ways to model the transport offi . The
densityρ and momentum fluxρu are obtained from

ρ =
∑

i

fi and ρu =
∑

i

ci fi . (2)

In a 9-speed square lattice, a suitable equilibrium distribution function often takes the form
[4, 8]

f eq
i = ραi

[
1 + 3ci · u + 9

2
(ci · u)2 − 3

2
u2

]
(3)

with α0 = 4/9, α1 = α3 = α5 = α7 = 1/9, and α2 = α4 = α6 = α8 = 1/36. This gives the
speed of soundcs = √

1/3 in a lattice unit. If Eq. (1b) is solved exactly usingf eq
i given by

Eq. (3), the viscosity of the fluid isν = τ/3 [1, 8]. In the classical BGK model, Eq. (1b) is
solved in the form of

fi (x + ci , t + 1) − fi (x, t) = −1

τ

(
fi (x, t) − f eq

i (x, t)
)

(4)

using1x = 1y = 1t = 1. The discretized equation (4) recovers the NS equations in the
nearly incompressible flow limit. Becausef eq

i in (3) is derived based on Talor series expan-
sion for small velocity, it is desirable that the maximum flow speed does not exceed 20%
of cs. Equation (4) can be viewed as a specially discretized form of Eq. (1b) in which the
advection termci · ∇ fi is evaluated using a first order down-wind difference. The negative



        

428 MEI AND SHYY

numerical diffusion introduced by the use of the first order down-wind difference can be
exactly accounted for by modifying the viscosity fromτ/3 to τ/3 − 1/6 with a second
order accuracy in both space and time [6]. Depending on the treatment of the boundary
conditions [5] for fi , τ may not be very close to 1/2 for stability reasons. This implies that
a practical lower limit onν may be imposed and flows with high Reynolds number have
been typically simulated using a large number of uniform lattices to give a large value of
the characteristic length of the domain.

The use of1x = 1y = 1t = 1 is quite restrictive in many applications involving external
flows where a large gradient exists only in a small region while the domain of interest is
large. It has been demonstrated that Eq. (1b) can be solved using non-uniform grids [9].
Successful implementation was carried out for flow in a channel with a sudden expansion
and flow over a cylinder using an interpolation procedure [10]. Caoet al. [3] have shown
that Eq. (1b) can be viewed as a transport equation forfi and can be solved using a finite
difference method. Central differencing was used for∇ fi in several examples with simple
geometries. In this approach, smaller viscosityν (=τ/3) can be used since1t can now be
chosen independent of1x. This allows for simulations at higher Reynolds numbers or for
flows with rapid transient features.

High Reynolds number flows around non-Cartesian objects are often of interest to a
large class of engineering problems. At finiteRe, the integrity of geometry is extremely
important. Although LBM based on the BGK model in Cartesian coordinates has been
shown to be effective to obtain the overall force on moving objects at low Reynolds number,
it is not the case at highResince the vorticity generation is sensitive to the geometrical
resolution. The absence of using body fitted coordinates in LBM primarily results from
the restriction of the lattice BGK (LBGK) equation to the rectangle lattice/grid and from
difficulties in implementing boundary conditions forfi on a solid wall. As Succi [20]
pointed out, “to the best of the authors knowledge, to date, nobody knows how to extend
synchronous LBE schemes ... to generalized coordinates and/or irregular mesh distributions.
This is a major stumbling block, as it rules out a host of important real-life engineering
applications.” He also observed that “the problem has been (partially) circumvented by
marrying LBE with standard finite-volume and, more recently, finite-difference technique.
By adopting a generic time-marching and space-discretization scheme, the synchronization
between discrete speeds and the spatial stencil is generally spoiled. This is precisely where
the geometrical flexibility comes from, since the spatial stencil is now set free from the
symmetry requirements imposed to the discrete speeds. The price for geometrical freedom
is the need to interpolate between the particle positions generated by the discrete speeds
and the sites of the spatial grids.” While LBM appears to have potential to compete with
or surpass the standard finite difference/finite volume/finite element methods for solving
the NS equations at high Reynolds numbers, clearly many fundamental and practical issues
need to be systematically addressed.

In this paper, the finite difference based lattice Boltzmann method (FDLBM) of
Caoet al. [3] is extended to curvilinear coordinates with non-uniform grids. In body-fitted
coordinates, the geometry of the solid boundaries can often be more easily preserved. In the
present effort, boundary conditions for thefi ’s are examined, and the impacts of discretizing
the convection term,ci ·∇ fi , using central difference and second order upwind schemes on
the behavior of the solution are assessed. Several flows are solved using FDLBM, including
impulsively started cylindrical Couette flow, steady state cylindrical Couette flow, steady
flow over flat plates, and steady flow over a circular cylinder. The primary focus of the
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paper is to assess the accuracy of the solution based on FDLBM at finite Reynolds number.
Pertinent comparisons are made with the LBGK solutions and finite difference solutions
for the NS equations.

2. FORMULATIONS

2.1. Transformed Equations in Curvilinear Coordinates

To preserve the geometry of the curved boundary, Eq. (1b) can be solved in a body-fitted
curvilinear coordinate system (Fig. 1) using the finite difference method. Letr = (x, y, z)
be transformed to a curvilinear coordinate (ξ1, ξ2, ξ3) so that Eq. (1) becomes

∂ fi
∂t

+ 1√
g

ci ·
3∑

m=1

(a j × ak)
∂ fi
∂ξm

= −1

τ

(
fi − f eq

i

)
, (5)

where

a j = ∂r
∂ξ j

, and
√

g = det|gjk | = a1 · (a2 × a3). (6)

The grid system can be generated numerically with desirable distributions. The depen-
dent variables,fi , do not change with the choice of coordinate systems. Equation (5)
can be discretized using the finite difference and the resulting equation is solved in an
explicit manner. Sinceci is defined in the Cartesian coordinates andfi is a scalar, the
Cartesian velocity (u, v, w) and densityρ can be easily obtained using Eq. (2) in the curvi-
linear coordinate system. Due to the absence of the second order spatial derivatives, the
transport equations forfi ’s are simpler than the transformed NS equations in curvilinear
coordinates.

Throughout the rest of this paper, only 2-D problems will be considered for simplicity.
In polar coordinates (r, θ ), Eq. (5) becomes

∂ fi
∂t

+ ci θ
1

r

∂ fi
∂θ

+ cir
∂ fi
∂r

= −1

τ

(
fi − f eq

i

)
, (7)

where

cir = cix cos(θ) + ciy sin(θ), (8a)

ci θ = −cix sin(θ) + ciy cos(θ). (8b)

FIG. 1. Grids in a body fitted curvilinear coordinate and a 2-D 9-bit lattice.
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If a one-dimensional grid stretching in ther -direction is applied,r = r (η), the above be-
comes

∂ fi
∂t

+ 1

r
ci θ

∂ fi
∂θ

+ cir

hr

∂ fi
∂η

= −1

τ

(
fi − f eq

i

)
, (9)

where

hr = dr

dη
. (10)

In Cartesian coordinates, after one-dimensional stretchingx = x(ξ) and y = y(η) are ap-
plied, Eq. (5) becomes

∂ fi
∂t

+ cix

hx

∂ fi
∂ξ

+ ciy

hy

∂ fi
∂η

= −1

τ

(
fi − f eq

i

)
, (11)

wherehx = dx/dξ andhy = dy/dη.

2.2. Discretization of the Transformed Equations

Equation (9), or (11), is a transport equation forfi with order one advection velocity
ci but does not possess an explicit diffusion. When a central difference approximation is
applied,∂ fi /∂ξ is

∂ fi
∂ξ

∣∣∣∣
centr

= fi ( j x + 1, j y) − fi ( j x − 1, j y)

21ξ
(12)

at grid point( j x, j y) regardless of the direction of the particle velocityci . For convection
dominated physical problems, it is known that such a central difference approximation for
the convection term may lead to artificial wiggles in the solution. However, a first order
upwind difference for the convection term will often lead to strong numerical dissipation
for finite Reynolds number flows which can significantly change the physics of the flow.
A popular approach is to adopt the higher order upwind discretization scheme. For the
Boltzmann equation, (9) or (11), the situation is more severe sincecix or ciy is still an
order one quantity on the solid wall, although the fluid velocityu may be zero. To maintain
desirable accuracy, one can employ the second order upwind difference scheme [18]. In
Eq. (9), for example,∂ fi /∂ξ can be approximated as

∂ fi
∂ξ

∣∣∣∣
2up

= 3 fi ( j x, j y) − 4 fi ( j x − 1, j y) + fi ( j x − 2, j y)

21ξ
if ci θ ≥ 0

= −3 fi ( j x, j y) + 4 fi ( j x + 1, j y) − fi ( j x + 2, j y)

21ξ
if ci θ < 0, (13)

where j x and j y are the grid number inξ - andη-directions, respectively.
It should be pointed out that the interpolation supplemented LBM [9] and the present

finite difference based LBM are two methods solving Boltzmann equation in curvilinear
coordinates. These two methods are in fact close in spirit. The first one starts directly from
the LBGK form which is a special finite difference discretization of the Boltzmann equation.
Their approach is a Lagrangian one, similar to a Riemann solver in which one tracks the
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advancement of a moving signal, then reconstructs the signal (distribution functionfi )
at field locations by an interpolation procedure. The current FDLBM, on the other hand,
considers the movement of the signal,fi , in an Eulerian sense. Hence we transform the
coordinates so that the lattice vertices and the signal locations are evaluated based on the
flux estimation. In the present FDLBM, the “second order upwind” is naturally embedded
in the solution. In the interpolation supplemented LBM, a second-order upwind type of
interpolation was also used to maintain the correct signal propagation.

In order to simulate higher Reynolds number flows, it is desirable to use a smaller
relaxation timeτ . However, when a very smallτ is used, Eq. (9) or (11) clearly becomes a
stiff equation and is more difficult to solve in an explicit procedure. This issue does not arise
in LBGK sinceτ > 1/2 is already imposed to maintain a positive viscosity so that the explicit
treatment of the relaxation term does not violate the stability requirement,1t/τ < 2, for
an explicit solver for an ordinary differential equation. An implicit representation for the
relaxation term on the right hand side of (9) or (11) is thus preferable in order to use smaller
τ and larger1t . However, the relaxation term is nonlinear in macroscopic variables asf eq

i

depends on the products such asρu andρu2. Denotingn as thenth time step on which
the solution or initial condition is known, this can be accomplished, without resorting to an
iterative procedure, as

−1

τ

(
fi − f eq

i

)∣∣n+1 = −1

τ

[
f n+1
i − (2 f eq,n

i − f eq,n−1
i

)]
. (14)

The extrapolation forf eq
i ensures that the relaxation term is at the (n + 1)st time step.

Finally, the discretized form of Eq. (9) can be cast in the form of

f n+1
i − f n

i

1t
+ 1

r
ci θ

∂ f n
i

∂θ

∣∣∣∣
2up

+ 1

hr
cir

∂ f n
i

∂η

∣∣∣∣
2up

= −1

τ

[
f n+1
i − (2 f eq,n

i − f eq,n−1
i

)]
. (15)

Because of the implicit nature of the relaxation term, the stability restriction now mainly
results from the explicit treatment of the advection terms which is known as the CFL
condition. In principle, since|ci | = 1, the time step should not exceed the smallest spatial grid
size in either direction. In practice, however, the extrapolation for the non-linear relaxation
term may contribute to instability if there is a large gradient of the density near a sharp corner.
It is worth pointing out that the effect of the extrapolation forf eq,n+1

i has no effect on the
viscosity. For an impulsively started Couette flow, the evolution of the velocity distribution
depends explicitly on the viscosity. Excellent agreement between the exact solution based
onν = τ/3 and the FDLBM solution shows that the extrapolation forf eq,n+1

i is appropriate.
In Eq. (15),(∂ f n

i /∂θ)|2up can be replaced by(∂ f n
i /∂θ)|centr as long as no wiggle is

detected in the solution. This feature is useful since the central difference is easier to
implement and computationally more efficient.

2.3. Boundary Conditions on a Solid Wall

There have been several recent studies [5, 16] on the implementation of boundary con-
ditions in the context of (4). A conventional bounce back scheme [11, 12] has been shown
to work reliably in conjunction with Eq. (4).

As pointed out in Chenet al. [5], if the wall is on the cell of the lattice, the values offi ’s
on an interior grid are needed during the streaming portion of the advection step. Physically,
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only the fluid velocityu is usually known on a solid wall. The question remains as to the
appropriate strategy for the boundary conditions offi when a solid wall is encountered.

Consider a wall atη = 0 (with j y = 2) and the fluid is on theη > 0 side (j y > 2). One
should note that the values off n

i (i x, 2) on the wall are part of the solution and the physical
boundary condition,u(i x, 2) = uwall , is reflected in the definition off eq

i (see Eq. (4)). It is
proposed that a one-sided difference be used for∂ fi /∂η on the wall to ease the numerical
implementation,

∂ f n
i

∂η
= f n

i ( j x, 3) − f n
i ( j x, 2)

1η
. (16)

Equivalently, an artificial grid can be introduced atη = −1η ( j y = 1) and the values offi
atη = −1η can be obtained using a linear extrapolation [5] as

f n
i ( j x, 1) = 2 f n

i ( j x, 2) − f n
i ( j x, 3). (17)

The central difference approximation for∂ f n
i /∂η gives

∂ f n
i

∂η

∣∣∣∣
centr

= f n
i ( j x, 3) − f n

i ( j x, 1)

21η
= f n

i ( j x, 3) − f n
i ( j x, 2)

1η
(18)

which is identical to the one-sided difference given by Eq. (16). Several numerical examples
presented below will show that such a treatment on the wall is adequate.

Computational boundary conditions forfi are very important issues in LBM. Treat-
ments on other kinds of boundaries (such as truncated infinity, symmetry line, and periodic
geometry) will be detailed in considering specific numerical examples.

3. NUMERICAL EXAMPLES

The FDLBM outlined above is now applied to solve several simple, yet nontrivial, pro-
blems. They are the impulsively started cylindrical Couette flow, the steady state cylindrical
Couette flow, a steady flow over a periodic stack of flat plates of finite length and zero
thickness, and a steady flow over a circular cylinder. The impulsively started cylindrical
Couette flow has a thin Stokes layer at small time which requires a grid stretching in order
to adequately resolve the flow field. The steady state cylindrical Couette flow allows the
examination of the long-time behavior of the FDLBM. The flow over flat plates encounters
singularities in the leading edge and trailing edge where the vorticity or pressure is theoret-
ically singular. The steady flow over a circular cylinder is the most difficult one considered
here, as will become clear later, due to possibly the interaction of the numerical boundary
condition at infinity with the flow in the wake region.

3.1. The Impulsively Started Cylindrical Couette Flow

The unsteady flow between cylinders of radiusr1 andr2 (>r1) is considered. Att < 0,
the fluid is at rest. The outer cylinder is started with a velocityU impulsively. Although the
tangential velocity is uniform in theθ -direction, the Cartesian components of the velocity,
(ux, uy), and the velocity distribution functionsfi are not uniform inθ . To implement the
exact boundary condition in theθ -direction, thefi ’s from θ = 0 toθ = 2π − 1θ are solved
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in which1θ is the step size in theθ -direction. The results forfi (i = 0 to 8), ρ, ux, anduy

atθ = 2π are set to those atθ = 0 due to periodicity. The periodic condition is also used in
evaluating∂ f n

i /∂θ nearθ = 0 at every time step. To resolve the thin unsteady Stokes layer,
the following stretching is applied in the radial direction

r = r1 + (r2 − r1)
1

β
tan−1[η tan(β)], (19)

where the parameterβ < π/2 controls stretching. A uniform grid distribution can be recov-
ered by using small values ofβ. A value close toπ/2 results in clustering of the grid near
r = r2 or η = 1.

In the simulation for impulsive starting, the following physical parameters are used:
r1 = 32, r2 = 64, τ = 0.25 (ν = 0.08333), andRe=U (r2 − r1)/ν = 10. This givesU =
0.0264 which is quite small compared with the speed of soundcs = 0.577. Thirty-two
intervals are used in ther - and θ -directions, respectively. The stretching parameter is
β = 1.0 and1t = 0.1. By increasing the grid resolution in theθ -direction to 64 inter-
vals while keeping the rest of the parameters unchanged, nearly the same velocity profiles
are obtained for the initial period considered (t < 100 in lattice unit). Both 2nd order up-
wind difference and central difference for the advection terms are implemented and the
results will be compared. Figure 2 shows the tangential velocity variation along the radial
direction att = 10, 20, 40, and 100 based on the 2nd order upwind forci · ∇ fi , the cen-
tral difference forci · ∇ fi , and a finite difference solution for the NS equations in polar

FIG. 2. Comparison of tangential velocity profiles in the impulsively started Couette flow. The NS equation
for uθ is solved using the implicit finite difference scheme with twice the grids in ther -direction used by FDLBM.
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coordinates,∂uθ /∂t = ν[(1/r )(∂/∂r )(r (∂uθ /∂r )) − uθ /r 2], with twice more grid points
along ther -direction and the same stretching function given by Eq. (19). The solution to NS
equation is intended to serve as an “exact solution.” Smaller grid size is used to reduce numer-
ical error in the “exact solution.” These instants correspond to dimensionless times based on
a diffusion time scale:t∗ = tν/(r2 − r1)

2 = 8.1438× 10−4, 1.6276× 10−3, 3.2552× 10−3,
and 8.1438× 10−3. Except fort = 10, three solutions agree very well. Fort = 10, which
is still a very small time, the 2nd order upwind solution has a slight overshoot while the
central difference-based solution does not exhibit such an overshoot. However, this slight
overshoot can be easily reduced by usingβ = 1.25 and1t = 0.05. Withβ = 1.25, the grid
size inr -direction is further reduced so that the numerical error associated with the 2nd
order upwind difference is reduced nearr = r2 where rapid variations offi occur. In Cao
et al. [3], a predictor-corrector procedure was used to solve forfi and the relaxation term
was kept in an explicit form. In the present formulation, only one step is needed at each time
step. It is worth noting that the temporal accuracy of the solution is quite satisfactory despite
the use of the first order difference in time. However, iff eq

i in Eq. (15) was not extrapolated
to the (n + 1) instant whilef n+1

i was used in the relaxation term, a noticeable discrepancy
in the velocity profile occurs in comparing with the solution of the NS equations due to the
mismatch in the collision mechanism represented by the relaxation.

3.2. Steady State Cylindrical Couette Flow

For steady state cylindrical Couette flow with the outer cylinder moving at a speed ofU ,
a simple expression for the exact solution of the tangential velocity exists:

uθ /U =
(

r2

r1
− r1

r2

)−1( r

r1
− r1

r

)
. (20)

From the radial component of the NS equations, the pressure variation alongr can be
obtained as

p(r ) − p(r1) = ρU2

(
r2

r1
− r1

r2

)−2[1

2

(
r

r1

)2

− 2 log

(
r

r1

)
− 1

2

(
r1

r

)2]
(21)

which is due to the centrifugal force. Since the fluid is nearly incompressible, the density
factor in Eq. (21) can take an average value ¯ρ as a first approximation and the actual density
variation can be obtained from the equation of state in differential from,dp= c2

sdρ, as

ρ(r ) − ρ(r1) ∼ 1

c2
s

ρ̄U2

(
r2

r1
− r1

r2

)−2[1

2

(
r

r1

)2

− 2 log

(
r

r1

)
− 1

2

(
r1

r

)2]
. (22)

In the FDLBM computation,β = 0.2 is used so that the grid is nearly uniform. The compu-
tation starts from a linear velocity profile foruθ and constant densityρ (=1.2) everywhere.
The discretized equation used is in the form of Eq. (15). The central difference approx-
imation for ∂ f n

i /∂θ and∂ f n
i /∂η is also implemented to assess the performance of such

discretization.
Figure 3 compares the steady state velocity profiles in cylindrical Couette flow between

the exact solution given by Eq. (20) and the FDLBM solution based on the central difference
scheme using 32 intervals in ther -direction, and 32, 64, and 128 intervals in theθ -direction,
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FIG. 3. Comparison of steady state velocity profiles in cylindrical Couette flow between the exact solution
and the FDLBM solution based on the central difference formulation. The results based on 2nd order upwind
formulation are indistinguishable from that of the central difference. The grid is nearly uniformly distributed in
polar coordinates.

respectively. The results based on the 2nd order upwind formulation are indistinguishable
from those of the central difference. As the resolution increases in theθ -direction, the
steady state solution becomes closer to the exact solution. The results using 64 intervals
in ther -direction and 128 intervals in theθ -direction, however, are nearly identical which
suggests that 32 intervals are sufficient in ther -direction.

Comparing Fig. 2 with Fig. 3, it is worth noting that in the initial stage of the impulsive
starting case, a large gradient occurs in the radial direction so that 32 intervals in the
θ -direction are adequate. In the steady state, the resolution in theθ -direction becomes as
important as in ther -direction since the variation offi in θ is as significant as inr .

Figure 4(a) shows the variations of steady state tangential velocity along theθ -direction
in cylindrical Couette flow at a given radial position close to the outer wall,y = (r − r1)/

(r2 − r1) = 0.9084. Both the 2nd order upwind and the central difference schemes have
small amplitude fluctuations. While the amplitudes in both cases are small compared with
the mean value, the central difference scheme has a larger fluctuating amplitude and smaller
wavelength (on the grid size scale) compared with that based on the 2nd order upwind
scheme. Figure 4(b) shows the variations of steady state density alongθ at y = 0.9084.
Again, the central difference based solution has a larger amplitude oscillation and the
wavelength of the oscillation is on the grid scale. Figure 4(c) shows the variations of steady
state density,ρ(r )−ρ(r1), along ther -direction. The reference density is taken fromr = r1.
The analytical solution forρ(r )−ρ(r1) is given by Eq. (22). For the central difference based
solution, a large grid-scale oscillation in ther -direction is observed. Hence, the reference
density is taken from the average value atr = r1 and the first grid away from the inner wall.
Noticing that the density variation based on the 2nd order upwind scheme agrees quite well
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FIG. 4. Variations of steady state solutions in cylindrical Couette flow. (a) Tangential velocity alongθ at
y = 0.9084; (b) density alongθ at y = 0.9084; (c) density along ther -direction. The reference density is taken
from r = r1. For the central difference case, the reference density is taken from the average atr = r1 and the next
grid in the flow field. Mixed denotes the use of(∂ f n

i /∂θ)|centr and(∂ f n
i /∂η)|2up in Eq. (15).



           

THE LATTICE BOLTZMANN METHOD 437

FIG. 4—Continued

with the exact solution, it is instructive to see if changing(∂ f n
i /∂η)|centr to (∂ f n

i /∂η)|2up

while keeping∂ f n
i /∂θ in the central difference form in Eq. (15) could eliminate the grid-

scale oscillation in ther -direction. The result based on the mixed difference scheme for the
advection term is also shown in Fig. 4(c). It is seen that it agrees well with the analytical
solution. This example indicates that the advection terms in each direction may be separately
approximated to achieve satisfactory results in using FDLBM. This feature will be explored
further when solving the external flow over a circular cylinder.

3.3. Steady Flow over a Flat Plate

Flow over a flat plate of finite length,L, placed parallel to the free stream, is considered
next (see Fig. 5). Because of the simplicity in the geometry, the standard LBGK approach,
Eq. (4), can be used to obtain the solution to the flow field. It needs to be pointed out in
the outset that since grid stretching can be applied in the FDLBM, flow over a flat plate in

FIG. 5. Sketch for flow over a stack of flat plates.
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an unbounded domain can be handled. In order to compare the results using the standard
LBGK approach, a periodic condition is imposed in they-direction aty = ±H to reduce
the computational effort in using LBGK. In order to assess the performance of FDLBM and
LBGK procedures meaningfully, all computations are made on a grid system consisting of
100 intervals in thex-direction and 50 in they-direction.

In the FDLBM for this flow, the following coordinate transformation from (x, y) to (ξ, η)
in which 0≤ ξ ≤ 1, 0≤ η ≤ 1 is applied:

z = −1 +
(

1 − z∞
L

)
eβ(ξ0−ξ) − 1

eβξ0 − 1
, 0≤ ξ ≤ ξ0 (22a)

z = −cξ tan−1

[
tan

(
1

cξ

)
0.5 − ξ

0.5 − ξ0

]
, ξ0 ≤ ξ ≤ 0.5. (22b)

This transforms 0≤ ξ ≤ 0.5 into −z∞ ≤ z≤ 0. A symmetry condition is then utilized for
z> 0. The relation betweenx andξ is established through

x/L = (z − 1)/2. (23)

The parameterz∞ determines the extent of the domain in thex-direction. Afterz∞, ξ0, and
β are specified as input,cξ is determined by requiring the derivativedz/dξ to be continuous
at ξ = ξ0. In they-direction, the following is used

y

L
= H

L

ecηη − 1

ecη − 1
. (24)

The boundary conditions are described as follows. On the symmetry line aty = 0 ( j y = 2),
a certain symmetry condition holds for the distribution functionsfi ’s so that thefi ’s at
y = −1y ( j y = 1) are obtained as

f0( j x, 1) = f0( j x, 3), f1( j x, 1) = f1( j x, 3), f2( j x, 1) = f8( j x, 3)

f3( j x, 1) = f7( j x, 3), f4( j x, 1) = f6( j x, 3), f5( j x, 1) = f5( j x, 3)

f6( j x, 1) = f4( j x, 3), f7( j x, 1) = f3( j x, 3), f8( j x, 1) = f2( j x, 3)

(25)

for x > 0 andx < −L. Similar symmetry conditions hold also aty = H . At y = 0, −L ≤
x ≤ 0, the extrapolation condition, Eq. (17), is applied while the no-slip condition for the
velocity is imposed. At the inlet,j x = 2, the uniform velocity distribution,

u( j x = 2, iy) = U and v( j x = 2, j y) = 0, (26)

is imposed. The distribution functionsfi ( j x = 1, j y) are set to equalfi ( j x = 2, j y)

fi ( j x = 1, j y) = fi ( j x = 2, j y) (27)

because of the uniformity of the flow. At the exit,j x = N x−1, a zeroth order extrapolation
is used, i.e.,

u(N x − 1, j y) = u(N x − 2, j y) and v(N x − 1, j y) = 0. (28)

The distribution function atj x = N x is obtained using linear extrapolation

fi (N x, j y) = 2 fi (N x − 1, j y) − fi (N x − 2, j y). (29)

The conditions given by (28)–(29) allow the wake velocity to be developed.
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FIG. 6. Lattice arrangement in LBGK near the plate.

Using the same transformed coordinates, the vorticity-stream function based NS equa-
tions [15] are also solved and the results provide the basis for comparison with LBM based
solutions. The computational domain isH/L = 5, z∞/L = 5 with L = 10 lattice units. The
non-uniform grids are generated using the following parameters:ξ0 = 0.32, cξ = 1, which
givesβ = 12.17473 in Eq. (22a), andcξ = 4 in Eq. (24). In both FDLBM andω − ψ for-
mulation, 100 intervals in theξ -direction and 50 intervals in theη-direction are used. This
gives a total of 36 intervals on the surface of the plate. ForRe= 10, τ = 0.25 is used so that
ν = τ/3= 0.08333 andU = 0.08333. ForRe= 100,τ = 0.025 andν = 0.008333. In both
cases, the time step is1t = 0.025 which is mainly dictated by the spatial resolution.

The LBGK based solution is obtained using the standard streaming-collision procedure
with 1x = 1y = 1t = 1. ForRe= 10, τ = 0.75 is used so thatν = (2τ − 1)/6= 0.08333
andU = 0.08333 forL = 10. ForRe= 100, τ = 0.55 so thatν = 0.008333 andU = 0.08333.
The solid wall is placed halfway between lattices (grids) indicated byj y = 1 and j y = 2, as
shown in Fig. 6. A standard bounce-back condition for thefi ’s [11, 12] on the plate is im-
plemented. Away from the plate, the symmetry conditions are enforced in a manner similar
to Eq. (25) except thatj y = 3 is replaced byj y = 2 in a form such asf7( j x, 1) = f3( j x, 2).
One hundred intervals in thex-direction and 50 intervals in they-direction are used in
LBGK solution. SinceL = 10, there are only 10 lattices (grids) on the plate. The inlet and
exit of the computational domain are atx/L = −6 and 4 so that1x = 1 with 100 intervals
in thex-direction.

Figure 7(a) compares the centerline velocities from three solutions based onω − ψ

formulation, FDLBM, and LBGK atRe= 10. The centerline velocity in LBGK is obtained
using extrapolation fromj y = 2 and j y = 3 together with the symmetry condition. Overall,
three solutions agree very well in both upstream and downstream. Because the grid strecthing
is applied near the leading edge and the trailing edge in FDLBM while a uniform grid is
used in LBGK, FDLBM based solution agrees with theω − ψ based solution better than
the LBGK solution near the leading edge, as shown in the inset of Fig. 7(a). Figure 7(b)
compares the velocity profiles in the middle of the plate,u(y, x/L = −0.5). Since the
singularity has little effect atx/L = 0.5, all three solutions agree well in regions near the
wall and near the symmetry line. Figure 7(c) compares the wall vorticity(L/U )(∂u/∂y)

along the plate from these three solutions. It is seen that LBGK solution agrees well with
theω −ψ based solution on almost all of the grids. Near the leading and trailing edges, the
resolution in LBGK is insufficient to observe a rapid rise in the vorticity. The FDLBM based
solution for the wall vorticity exhibits an oscillatory behavior near the leading and trailing
edges. A closer examination of the flow field reveals that the oscillation in velocity, hence
vorticity, is associated with a rapid variation in densityρ near the edges. Figure 8 shows
the variation ofρ in the x-direction near the plate for bothRe= 10 andRe= 100. In the
near incompressible flow limit, the density variation is viewed as the pressure variation. The
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FIG. 7. (a) Centerline wake velocity atRe= 10 from three solutions. (b) Velocity profile in the middle of the
plate atRe= 10. (c) Surface vorticity on the plate atRe= 10.
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FIG. 7—Continued

oscillation inp along thex-direction results from the singularity in the boundary condition
near the edges. In LBGK, the plate is located halfway between the lattices (see Fig. 6) so
that the density atj y = 2 is much less singular as the grid is off the plate. In theω − ψ

formulation, the pressure is decoupled from the primary variableω while the velocity is
evaluated by taking derivatives ofψ . The fact that the LBGK has a better agreement for

FIG. 8. Density variations from FDLBM on the symmetry axis and plate atRe= 10 and 100.
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wall vorticity with that based on theω − ψ formulation is thus attributed to the way the
grids are arranged.

Figure 9(a) compares the centerline velocities based on three solutions atRe= 100. All
solutions are based on 100× 50 grids. Due to insufficient resolution near the plate in
LBGK, a noticeable difference inu(x) is observed between LBGK based andω − ψ based
solutions in both upstream and downstream regions. Figure 9(b) shows velocity profilesu(y)

near the plate (Y/L < 0.5) at x/L = −0.95, −0.5, and−0.05 from these three solutions.
Reasonable agreement is observed between FDLBM andω − ψ based solutions. Again, due
to insufficient resolution (1y/L = 0.1) at higher Reynolds number, the velocity profile near
the leading edge in LBGK exhibits unphysical oscillation. If the standard LBGK procedure
is to be used for flow problems with such kind of singularities at higher Reynolds number,
much better resolution should be used.

3.4. Steady Flow over a Circular Cylinder

Flow over a circular cylinder (Fig. 10) is most conveniently carried out in polar coordi-
nates. In LBGK procedure with square lattice, the cylindrical surface is only approximately
described. Due to the use of the uniform grid, it is impractical to compute an unbounded
flow over the cylinder. Hence comparisons for the flow field will be made between the
ω − ψ based solutions and FDLBM based solution.

In applying FDLBM for the flow field, the following coordinate stretching similar to
Eq. (19) is used,

r = r1 + (r∞ − r1)

{
1 − 1

β
tan−1[(1 − η) tan(β)]

}
. (30)

The cylinder radiusr1 = 10 is used. To examine the effect of the domain size on the solu-
tion, two values of the ratior∞/r1 (100 and 1000) are used. In theω − ψ formulation, the
same coordinate stretching is implemented withr1 = 1. Uniform grids in theθ -direction
are adopted in both solution procedures. In theω − ψ formulation using finite difference
discretization, the second order upwind scheme is applied in both ther - andθ -directions.
In the FDLBM the second order upwind is applied to ther -direction only, since the cen-
tral difference for the advection term in theθ -direction does not result in any unphysical
oscillation.

Figure 11(a) compares the dimensionless surface vorticity on the cylinder between the
ω − ψ based solution and FDLBM based solution atRe= 10. In both computations,
r∞/r1 = 100, β−1 = 0.65, with 128 and 64 intervals in ther - and θ -directions, respec-
tively. In FDLBM, τ = 0.4,U = 0.0667. Since the vorticity is a near field quantity, it is seen
that agreement between the two solutions is very good in the near field on the same compu-
tational domain with the same grid resolutions. Figure 11(b) compares the wall vorticity of
the present solution with that given by Fornberg [7] for steady flow atRe= 100. The present
FDLBM solution used 256 and 128 intervals in ther - andθ -directions, respectively, for
Re= 100 withτ = 0.04,U = 0.0667. The steady state solution is obtained without vortex
shedding since no artificial asymmetry in the initial condition was introduced. Again, the
agreement is reasonable.

Figure 12 compares the profiles of thex-component velocity atx = 0 atRe= 10. Two
grid systems are used in FDLBM: (i)r∞/r1 = 100 andβ−1 = 0.65; (ii) r∞/r1 = 1000 and
β−1 = 0.645 with (128, 64) grid intervals in (r, θ ). In theω − ψ formulation, three sets of so-
lutions are obtained: (i)r∞/r1 = 100, β−1 = 0.65 with (128, 64) intervals; (ii)r∞/r1 = 1000
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FIG. 9. (a) Comparison of the centerline wake velocity from three solutions. (b) Comparison of the velocity
profiles on the plate based on three solutions atRe= 100.
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FIG. 10. Sketch of flow over a circular cylinder.

andβ−1 = 0.645 with (128, 64) intervals; (iii)r∞/r1 = 1000 andβ−1 = 0.645 with (128,
128) intervals. Theu-velocity profiles based on theω − ψ formulation obtained with
r∞/r1 = 1000 on 128×128 grids are virtually identical to that on the 128×64 grid fory/r −
1≤ 10; so only one is presented. It is observed that FDLBM solution on either grid agrees
very well with theω − ψ based solution obtained on 128× 128 grids andr∞/r1 = 1000.

For flows in an unbounded domain, it is important to examine the behavior and accuracy of
FDLBM solution in the far field. Figure 13(a) shows the wake centerline velocity obtained
from two solutions on various grids in the region ofr/r1 < 100. For the far field, the best
resolution is theω − ψ based solution withr∞/r1 = 1000 on a 128× 128 grid. This grid
system extends 1000 radii downstream and has a better resolution in theθ -direction so that
the narrow wake (whose width scales with(xν/U )1/2 [17]) is better resolved than other
grid systems used here. In general, if the wake is not sufficiently resolved, the vorticity
in the wake decays more rapidly (in most cases exponentially) than algebraically in the
x-direction so that the velocity recovery to the free stream value is faster. The solutions
based onr∞/r1 = 100 are obviously affected by the boundary condition nearr = r∞. Of the
two solutions obtained onr∞/r1 = 1000 and 128× 64 grids, the FDLBM-based solution
appears to be better than theω−ψ based solution on the same grid. Figure 13(b) shows the
decay of wake velocity in the form of 1− u/U in x/r1−1 ≤ 1000. The decay should follow
anx−1/2 asymptotic behavior. It is clear that the FDLBM-based solution onr∞/r1 = 1000
and 128× 64 grids has a slightly larger region exhibiting this asymptotic behavior than the
ω − ψ-based solution on the same grid system.

The length of the separation bubble(L) and the separation anglesθ are also obtained
using FDLBM on the same grid (with 128 and 64 intervals in ther - and θ -directions).
They are(L/r1, θ)= (0.498, 30.0◦), (1.804, 42.1◦), and (4.38, 50.12◦) for Re= 10, 20, and
40. The present results compare reasonably well with those reported by He and Doolen
[10] using interpolation supplemented LBM with finer grids: (L/r1, θ)= (0.474, 26.89◦),
(1.842, 42.96◦), and (4.49, 52.84◦) for Re= 10, 20, and 40.

Direct comparison of the computational efficiency between FDLBM and the conventional
CFD method, such as finite difference, requires careful implementation of both methods on
the same physical problems on the same machine. Some related information of the LBM
and the NS solvers on parallel computation can be found in Maieret al. [14] and in Shyy
et al.[19], respectively. However, many programming and unreported factors make a direct
comparison between these approaches difficult. More work will be required in this regard.
Based on the available information, it appears that the present approach is competitive to
similar approaches. For example, He and Doolen [10] reported that forRe= 10 and 20, the
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FIG. 11. Comparison of the surface vorticity on the cylinder. (a)Re= 10; (b)Re= 100.
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FIG. 12. Comparison of thex-component velocity atx = 0 between two solutions on various grids for
flow over a cylinder.

time step used was 0.0025 times ofr1/U (r1 = 40 lattice unit andU = 0.1). In our test case
usingU = 0.1, the time step was 0.002 times ofr1/U and computations were stable. On a
DEC alpha Station with a single processor and a clock speed of 256 MHz, each time step
takes about 0.058 s on 65× 129 grid points. In the interpolation supplemented LBM, the
extra work is in the second order interpolation in comparison with the classical LBGK. In
the present case, the extra work is in the evaluation of the advective term. The amount of
work is comparable between the two approaches [13].

4. SUMMARY AND CONCLUSIONS

The finite difference-based lattice Boltzmann method (FDLBM) suggested by Caoet al.
[3] is extended to curvilinear coordinates with non-uniform grids. The geometry of curved
boundaries is preserved in body-fitted coordinates. The non-uniform grids allow the use
of a much larger computational domain to minimize the effect of the outflow boundary
condition. A single step method, instead of the predictor-corrector procedure as used in Cao
et al. [3], is implemented. The relaxation term in the transport equation for the distribution
function fi ’s is treated semi-implicitly to improve the stability while the procedure for the
evaluation of fi ’s remains explicit. Detailed examinations of various flows (impulsively
started cylindrical Couette flow, steady state cylindrical Couette flow, steady flow over flat
plates, and steady flow over a circular cylinder) are carried out.

The extrapolation based boundary condition for the distribution functionfi ’s on a solid
wall [5] is extended to curvilinear coordinates. Results based on this treatment agree well
with either analytical solutions or results based on other numerical methods. The use of
central difference discretization for the advection terms in the transport equations forfi ’s
typically results in wiggles on the grid scale in the solution which can lead to numerical
instability. The second order upwind difference for the advection term should then be used
to eliminate these wiggles. For the first time, it is demonstrated that the Lattice Boltzmann
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FIG. 13. (a) Comparison of the wake centerline velocity inx/r1 ≤ 100 between two solutions on various
grids. (b) Decay of the wake centerline velocity based on two solutions obtained with various grids.
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method can capture the far wake flow field accurately by using non-uniform grids. Favor-
able results obtained using FDLBM in curvilinear coordinates indicate that the method is
potentially capable of solving finite Reynolds number flow problems in complex geometries.
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