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The lattice Boltzmann method is a microscopic-based approach for solving the
fluid flow problems at the macroscopic scales. The presently popular method uses
regularly spaced lattices and cannot handle curved boundaries with desirable flex-
ibility. To circumvent such difficulties, a finite difference-based lattice Boltzmann
method (FDLBM) in curvilinear coordinates is explored using body-fitted coordi-
nates with non-uniform grids. Several test cases, including the impulsively started
cylindrical Couette flow, steady state cylindrical Couette flow, steady flow over flat
plates, and steady flow over a circular cylinder, are used to examine various issues
related to the FDLBM. The effect of boundary conditions for the distribution func-
tions on the solution, the merits between second-order central difference and upwind
schemes for advection terms, and the effect of the Reynolds number are investigated.
Favorable results are obtained using FDLBM in curvilinear coordinates, indicat-
ing that the method is potentially capable of solving finite Reynolds number flow
problems in complex geometriese 1998 Academic Press

1. INTRODUCTION

There has been rapid development of the Lattice Boltzmann method (LBM) as an alte
tive numerical method for simulating fluid dynamics problems [4]. In traditional numeric
methods, the macroscopic variables, such as velocity and density, are obtained by solvir
Navier—Stokes (NS) equations. The LBM solves the microscopic kinetic equation for |
ticle distribution functionf; from which the macroscopic quantities (velocity and density
are obtained through moment integrationfafin the kinetic equation fof; (see Eq. (1)),
the advection operator is linear in the phase space while the convection term is non-line
the NS equations. A BGK type simple relaxation process in the kinetic equation allows
recovery of the non-linear convection in the NS equations through the multi-scale ex|
sion. In the nearly incompressible flow limit, the NS equations are recovered. In partict
the pressure is typically obtained by solving the Poisson equation (or an equivalent
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THE LATTICE BOLTZMANN METHOD 427

derived from the incompressible NS equations which can be time consuming. In LBM,
pressure is obtained through an extremely simple equation of stafe6pc2, in which p
is the fluid density and;s is the speed of sound. This is a quite appealing feature of the LB
The discretized equation fdft is explicit and easy to implement in parallel processing. A
low Reynolds number, LBM can handle very complex geometry such as multiphase |
in porous media or through small holes [4].

The Boltzmann equation governing the velocity distribution functigh c, x) may be
written, with a single relaxation time, as

of 1
—+4c-Vf=

_Z(f — f&
P = T(f 59, (1a)

wheref €dis the equilibrium distribution. After discretizing the velocity spadeto various
directions, the Boltzmann equation for the velocity distribution functiomay be written
as

af; 1 eq .

E"‘Q'Vfi:__(fi_fi ) i=01...,8 for2-D (1b)

T

[1, 3, 8] wheref,*% is the equilibrium distribution off;, chosen to satisfy the NS equation
andg; is the lattice velocity in théth-direction. In a 2-D, 9-speed square lattice,

¢ = (coq(i — Dm/4), sin((i — Dr/4)) fori =1,3,5,7,
¢ = V2(cos(i — D)mr/4), sin((i — 1)r/4)) fori =2,4,6,8, and ¢y, =0.

Itis noted that Eq. (1b) is one of numerous possible ways to model the transgdoribe
densityp and momentum fluyu are obtained from

p=> fi and pu=> cf. (2)

In a 9-speed square lattice, a suitable equilibrium distribution function often takes the f
(4, 8]

9 3
29 = pay {1+ 3ci-u+ 5 u)? — ZUZ} (3)

with og = 4/9, o] =03=05=07= 1/9, and O =04 =0p=08= 1/36 This gives the
speed of sounds = ,/1/3 in a lattice unit. If Eq. (1b) is solved exactly usiri§® given by
Eq. (3), the viscosity of the fluid is=t/3 [1, 8]. In the classical BGK model, Eq. (1b) is
solved in the form of

fix+c,t+1) — fixx,t) = —%(fi x.t) — £, 1) 4)

using Ax = Ay = At =1. The discretized equation (4) recovers the NS equations in |
nearly incompressible flow limit. Becausg®in (3) is derived based on Talor series expar
sion for small velocity, it is desirable that the maximum flow speed does not exceed -
of cs. Equation (4) can be viewed as a specially discretized form of Eq. (1b) in which
advection terng; - V fj is evaluated using a first order down-wind difference. The negati
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numerical diffusion introduced by the use of the first order down-wind difference can
exactly accounted for by modifying the viscosity fram3 to /3 — 1/6 with a second
order accuracy in both space and time [6]. Depending on the treatment of the boun
conditions [5] for f;, T may not be very close to/2 for stability reasons. This implies that
a practical lower limit orv may be imposed and flows with high Reynolds number ha
been typically simulated using a large number of uniform lattices to give a large value
the characteristic length of the domain.

The use ofAX = Ay = At = 1 is quite restrictive in many applications involving externa
flows where a large gradient exists only in a small region while the domain of interes
large. It has been demonstrated that Eq. (1b) can be solved using non-uniform grids
Successful implementation was carried out for flow in a channel with a sudden expan
and flow over a cylinder using an interpolation procedure [10]. €aal. [3] have shown
that Eq. (1b) can be viewed as a transport equatiorfifand can be solved using a finite
difference method. Central differencing was used¥dr in several examples with simple
geometries. In this approach, smaller viscosity=7/3) can be used sinc&t can now be
chosen independent afx. This allows for simulations at higher Reynolds numbers or f
flows with rapid transient features.

High Reynolds number flows around non-Cartesian objects are often of interest
large class of engineering problems. At finRe the integrity of geometry is extremely
important. Although LBM based on the BGK model in Cartesian coordinates has b
shown to be effective to obtain the overall force on moving objects at low Reynolds num
it is not the case at higRe since the vorticity generation is sensitive to the geometric
resolution. The absence of using body fitted coordinates in LBM primarily results fre
the restriction of the lattice BGK (LBGK) equation to the rectangle lattice/grid and frc
difficulties in implementing boundary conditions fdr on a solid wall. As Succi [20]
pointed out, “to the best of the authors knowledge, to date, nobody knows how to ex
synchronous LBE schemes ... to generalized coordinates and/or irregular mesh distribu
This is a major stumbling block, as it rules out a host of important real-life engineer
applications.” He also observed that “the problem has been (partially) circumventec
marrying LBE with standard finite-volume and, more recently, finite-difference techniq
By adopting a generic time-marching and space-discretization scheme, the synchroniz
between discrete speeds and the spatial stencil is generally spoiled. This is precisely v
the geometrical flexibility comes from, since the spatial stencil is now set free from
symmetry requirements imposed to the discrete speeds. The price for geometrical fre
is the need to interpolate between the particle positions generated by the discrete s
and the sites of the spatial grids.” While LBM appears to have potential to compete \
or surpass the standard finite difference/finite volume/finite element methods for sol
the NS equations at high Reynolds numbers, clearly many fundamental and practical i
need to be systematically addressed.

In this paper, the finite difference based lattice Boltzmann method (FDLBM)
Caoet al.[3] is extended to curvilinear coordinates with non-uniform grids. In body-fitte
coordinates, the geometry of the solid boundaries can often be more easily preserved.
present effort, boundary conditions for thés are examined, and the impacts of discretizing
the convection terng; - V fi, using central difference and second order upwind schemes
the behavior of the solution are assessed. Several flows are solved using FDLBM, inclu
impulsively started cylindrical Couette flow, steady state cylindrical Couette flow, ste:
flow over flat plates, and steady flow over a circular cylinder. The primary focus of 1
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paper is to assess the accuracy of the solution based on FDLBM at finite Reynolds nur
Pertinent comparisons are made with the LBGK solutions and finite difference soluti
for the NS equations.

2. FORMULATIONS

2.1. Transformed Equations in Curvilinear Coordinates

To preserve the geometry of the curved boundary, Eq. (1b) can be solved in a body-
curvilinear coordinate system (Fig. 1) using the finite difference method. 4k, v, 2)
be transformed to a curvilinear coordinate, &», &3) so that Eq. (1) becomes

3

ofi 1 ofi 1 eq
1 _E( 2T — f
Bt + \/GCI mzl(a] Xak)asm T( ! 1 )9 (5)
where
ar
a; = @ and /9 = det|gjk| = a; - (az x ag). (6)
j

The grid system can be generated numerically with desirable distributions. The de
dent variables,f;j, do not change with the choice of coordinate systems. Equation
can be discretized using the finite difference and the resulting equation is solved il
explicit manner. Since; is defined in the Cartesian coordinates afjds a scalar, the
Cartesian velocityy, v, w) and density can be easily obtained using Eq. (2) in the curvi
linear coordinate system. Due to the absence of the second order spatial derivative
transport equations fofi’s are simpler than the transformed NS equations in curviline
coordinates.

Throughout the rest of this paper, only 2-D problems will be considered for simplic
In polar coordinatesr(6), Eq. (5) becomes

of; 10f; of; 1 e
! o L T (f — fod 7
at TG e Ty z(' ) 0
where
Cir = Gix COS0) + Ciy SiN(9), (8a)
Cip = —Cix SIN(®) + Ciy COKH). (8b)
4 3 2
— €3
- €2
Cs
—— 5 3 1
e €y Cg
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FIG. 1. Grids in a body fitted curvilinear coordinate and a 2-D 9-bit lattice.
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If a one-dimensional grid stretching in tihedirection is appliedy =r (n), the above be-
comes

Bfi 1 3fi Cir afi . 1

AT — e T f — fed 9
ot Tr%% T h oy r(' ) ©)
where
dr
h = —. 10
= (10)

In Cartesian coordinates, after one-dimensional stretchiag(¢§) andy = y(n) are ap-
plied, Eqg. (5) becomes
of; GCix Of; Ciy ofi 1 e
— 4+ L T =Ty = 159, 11
at ' he 95 hy an r(l ) (11)

whereh, = dx/d& andhy =dy/dn.

2.2. Discretization of the Transformed Equations

Equation (9), or (11), is a transport equation fiprwith order one advection velocity
¢ but does not possess an explicit diffusion. When a central difference approximatic
applied,of; /9& is

ofi _ fi(ix+1 jy) = fi(ix =1, jy)
as centr ZAé

(12)

at grid point(jx, jy) regardless of the direction of the particle velodatyFor convection
dominated physical problems, it is known that such a central difference approximatior
the convection term may lead to artificial wiggles in the solution. However, a first orc
upwind difference for the convection term will often lead to strong numerical dissipati
for finite Reynolds number flows which can significantly change the physics of the fl
A popular approach is to adopt the higher order upwind discretization scheme. For
Boltzmann equation, (9) or (11), the situation is more severe sigcer ¢y is still an
order one quantity on the solid wall, although the fluid veloaitpay be zero. To maintain
desirable accuracy, one can employ the second order upwind difference scheme [1
Eq. (9), for exampleyf; /d& can be approximated as

ofi| - _ 3fi(ix, jy) —4fi(x = 1, jy) + fi(1x = 2, jy) if Gy > 0

9% |oup 2AE
_ 30X N A ARGXF L) = GOXH209) o g
= ZAs 0 s

wherejx andjy are the grid number i&- andn-directions, respectively.

It should be pointed out that the interpolation supplemented LBM [9] and the pres
finite difference based LBM are two methods solving Boltzmann equation in curviling
coordinates. These two methods are in fact close in spirit. The first one starts directly 1
the LBGK form which is a special finite difference discretization of the Boltzmann equati
Their approach is a Lagrangian one, similar to a Riemann solver in which one tracks
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advancement of a moving signal, then reconstructs the signal (distribution furfglion
at field locations by an interpolation procedure. The current FDLBM, on the other ha
considers the movement of the signél, in an Eulerian sense. Hence we transform th
coordinates so that the lattice vertices and the signal locations are evaluated based
flux estimation. In the present FDLBM, the “second order upwind” is naturally embedc
in the solution. In the interpolation supplemented LBM, a second-order upwind type
interpolation was also used to maintain the correct signal propagation.

In order to simulate higher Reynolds number flows, it is desirable to use a sme
relaxation timer. However, when a very smaidlis used, Eq. (9) or (11) clearly becomes ¢
stiff equation and is more difficult to solve in an explicit procedure. This issue does not a
in LBGK sincer > 1/2is already imposed to maintain a positive viscosity so that the expli
treatment of the relaxation term does not violate the stability requireméyit, < 2, for
an explicit solver for an ordinary differential equation. An implicit representation for t!
relaxation term on the right hand side of (9) or (11) is thus preferable in order to use sm
t and largerat. However, the relaxation term is nonlinear in macroscopic variabléSas
depends on the products such@asand pu?. Denotingn as thenth time step on which
the solution or initial condition is known, this can be accomplished, without resorting to
iterative procedure, as

_% (f — 29" = _% [0 (2600  fean-)], (14)

The extrapolation forf,*® ensures that the relaxation term is at thet( 1)st time step.
Finally, the discretized form of Eq. (9) can be cast in the form of

= L[ (26090 g ] (15

2up T

At r 00

1C- afn
h, " on

2up

Because of the implicit nature of the relaxation term, the stability restriction now mai
results from the explicit treatment of the advection terms which is known as the C
condition. In principle, sincg; | = 1, the time step should not exceed the smallest spatial g
size in either direction. In practice, however, the extrapolation for the non-linear relaxa
term may contribute to instability if there is alarge gradient of the density near a sharp co
It is worth pointing out that the effect of the extrapolation ifg)er“‘”“ has no effect on the
viscosity. For an impulsively started Couette flow, the evolution of the velocity distributi
depends explicitly on the viscosity. Excellent agreement between the exact solution b
onv = r/3 and the FDLBM solution shows that the extrapolationft8"** is appropriate.

In Eq. (15),(3f"/30)|2up can be replaced bydf,"/36)|centr @s long as no wiggle is
detected in the solution. This feature is useful since the central difference is easie
implement and computationally more efficient.

2.3. Boundary Conditions on a Solid Wall

There have been several recent studies [5, 16] on the implementation of boundary
ditions in the context of (4). A conventional bounce back scheme [11, 12] has been sh
to work reliably in conjunction with Eq. (4).

As pointed out in Cheet al.[5], if the wall is on the cell of the lattice, the values Hfs
on an interior grid are needed during the streaming portion of the advection step. Physi
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only the fluid velocityu is usually known on a solid wall. The question remains as to tt
appropriate strategy for the boundary conditiond;oivhen a solid wall is encountered.

Consider a wall aty =0 (with jy =2) and the fluid is on the@ > 0 side (y > 2). One
should note that the values §f (ix, 2) on the wall are part of the solution and the physice
boundary conditionu(ix, 2) = Uy, is reflected in the definition of ° (see Eq. (4)). Itis
proposed that a one-sided difference be used fgton on the wall to ease the numerical
implementation,

afin . fin(jX,3) - fi”(jX,Z)
an An '

(16)

Equivalently, an artificial grid can be introducedjat —An (jy = 1) and the values of;
atn = —An can be obtained using a linear extrapolation [5] as

fh(ix, D =2f"(jx,2) — f"(jx, 3). (17)

The central difference approximation f&f"/dn gives

afir| _ fin(jx73) - fin(jxvl) _ fin(jx93) - fin(jxvz)

— (18)
I [centr 2An An

which is identical to the one-sided difference given by Eqg. (16). Several numerical exam
presented below will show that such a treatment on the wall is adequate.

Computational boundary conditions fdy are very important issues in LBM. Treat-
ments on other kinds of boundaries (such as truncated infinity, symmetry line, and peri
geometry) will be detailed in considering specific numerical examples.

3. NUMERICAL EXAMPLES

The FDLBM outlined above is now applied to solve several simple, yet nontrivial, pi
blems. They are the impulsively started cylindrical Couette flow, the steady state cylindi
Couette flow, a steady flow over a periodic stack of flat plates of finite length and z
thickness, and a steady flow over a circular cylinder. The impulsively started cylindri
Couette flow has a thin Stokes layer at small time which requires a grid stretching in o
to adequately resolve the flow field. The steady state cylindrical Couette flow allows
examination of the long-time behavior of the FDLBM. The flow over flat plates encount
singularities in the leading edge and trailing edge where the vorticity or pressure is the
ically singular. The steady flow over a circular cylinder is the most difficult one considel
here, as will become clear later, due to possibly the interaction of the numerical boun
condition at infinity with the flow in the wake region.

3.1. The Impulsively Started Cylindrical Couette Flow

The unsteady flow between cylinders of radigsndr, (>r1) is considered. At <O,
the fluid is at rest. The outer cylinder is started with a veloditynpulsively. Although the
tangential velocity is uniform in the-direction, the Cartesian components of the velocity
(ux, uy), and the velocity distribution function§ are not uniform ir6. To implement the
exact boundary condition in thfedirection, thef;’s from6 =0to6 = 2r — A6 are solved
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in which A6 is the step size in the-direction. The results fof; (i =010 8), p, uy, anduy
atf = 27 are set to those at= 0 due to periodicity. The periodic condition is also used i
evaluatingd f;" /96 neard = 0 at every time step. To resolve the thin unsteady Stokes lay
the following stretching is applied in the radial direction

f =t (2 — n)% tar[n tar(B)]. (19)

where the paramet@ < 7 /2 controls stretching. A uniform grid distribution can be recov
ered by using small values @f A value close tor/2 results in clustering of the grid near
r=rporn=1.

In the simulation for impulsive starting, the following physical parameters are us
ri=32r,=64,t=0.25 (v=0.08333), andRe=U (r, — r;)/v=10. This givesU =
0.0264 which is quite small compared with the speed of sotyd 0.577. Thirty-two
intervals are used in the- and 6-directions, respectively. The stretching parameter
B=1.0 and At =0.1. By increasing the grid resolution in tledirection to 64 inter-
vals while keeping the rest of the parameters unchanged, nearly the same velocity pr
are obtained for the initial period considered<(100 in lattice unit). Both 2nd order up-
wind difference and central difference for the advection terms are implemented anc
results will be compared. Figure 2 shows the tangential velocity variation along the ra
direction att =10, 20, 40, and 100 based on the 2nd order upwinddorV f;, the cen-
tral difference forc; - V fj, and a finite difference solution for the NS equations in pol

1.0 7]
] 1=0.25, v=0.0833 [
0.9 1 U=0.02604, Re=10 -
o ] [
= 087 L
- 1 Solid lines: NS equation
= Symbols: FDLBM
Triangles: central difference [
1 Circles: 2nd order upwind -
0.7 5
0.6 ] —rvvf| vyt e v+ v+ Tt v 17
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

u /U
-]

FIG. 2. Comparison of tangential velocity profiles in the impulsively started Couette flow. The NS equat
for u, is solved using the implicit finite difference scheme with twice the grids im ttieection used by FDLBM.
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coordinatespu, /ot = v[(1/r)(3/0r)(r (duy /dr)) — ug/r?], with twice more grid points
along the -direction and the same stretching function given by Eg. (19). The solution to |
equationisintendedto serve as an “exact solution.” Smaller grid size is used to reduce nt
ical error in the “exact solution.” These instants correspond to dimensionless times bast
a diffusion time scalet* =tv/(r, —r1)2=8.1438x 1074, 1.6276x 1073, 3.2552x 1073,
and 81438 x 1073. Except fort = 10, three solutions agree very well. Roe 10, which

is still a very small time, the 2nd order upwind solution has a slight overshoot while
central difference-based solution does not exhibit such an overshoot. However, this <
overshoot can be easily reduced by usfng 1.25 andAt = 0.05. With 8 = 1.25, the grid
size inr-direction is further reduced so that the numerical error associated with the
order upwind difference is reduced neas r, where rapid variations of; occur. In Cao
et al.[3], a predictor-corrector procedure was used to solveff@and the relaxation term
was keptin an explicit form. In the present formulation, only one step is needed at each
step. Itis worth noting that the temporal accuracy of the solution is quite satisfactory des
the use of the first order difference in time. HowevefSf in Eq. (15) was not extrapolated
to the f1 + 1) instant whilef""* was used in the relaxation term, a noticeable discrepan
in the velocity profile occurs in comparing with the solution of the NS equations due to
mismatch in the collision mechanism represented by the relaxation.

3.2. Steady State Cylindrical Couette Flow

For steady state cylindrical Couette flow with the outer cylinder moving at a spégd of
a simple expression for the exact solution of the tangential velocity exists:

-1
I r r I
U/U=[-=--—= ———=). 20
=(2-2) (-2 20)
From the radial component of the NS equations, the pressure variation raloaig be
obtained as

-2 2 2
_ _uzffe M) TILrNT L y_1(n
P(r) = pr) = pU <r1 f2> [2<r1) 2log(r1> 2<r ) } 1)
which is due to the centrifugal force. Since the fluid is nearly incompressible, the den

factor in Eq. (21) can take an average vahues a first approximation and the actual densit
variation can be obtained from the equation of state in differential fcqmes c2dp, as

1_,/(r r1_21r2 r 1r12
po =~ (- 2) 55 ) -2ealf) -5(7) ] @
In the FDLBM computationg = 0.2 is used so that the grid is nearly uniform. The compt
tation starts from a linear velocity profile fag and constant densify (=1.2) everywhere.
The discretized equation used is in the form of Eq. (15). The central difference app
imation for af"/00 andaf"/dy is also implemented to assess the performance of su
discretization.
Figure 3 compares the steady state velocity profiles in cylindrical Couette flow betw

the exact solution given by Eq. (20) and the FDLBM solution based on the central differe
scheme using 32 intervals in thelirection, and 32, 64, and 128 intervals in thalirection,
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N, xN
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FIG. 3. Comparison of steady state velocity profiles in cylindrical Couette flow between the exact solu
and the FDLBM solution based on the central difference formulation. The results based on 2nd order up
formulation are indistinguishable from that of the central difference. The grid is nearly uniformly distributec
polar coordinates.

respectively. The results based on the 2nd order upwind formulation are indistinguish
from those of the central difference. As the resolution increases if-ttiesction, the
steady state solution becomes closer to the exact solution. The results using 64 inte
in ther -direction and 128 intervals in thedirection, however, are nearly identical which
suggests that 32 intervals are sufficient inthdirection.

Comparing Fig. 2 with Fig. 3, it is worth noting that in the initial stage of the impulsi\
starting case, a large gradient occurs in the radial direction so that 32 intervals in
f-direction are adequate. In the steady state, the resolution #direction becomes as
important as in the-direction since the variation df; in 6 is as significant as in.

Figure 4(a) shows the variations of steady state tangential velocity alord@ydlirection
in cylindrical Couette flow at a given radial position close to the outer waH,(r —r1)/
(r — r1) =0.9084. Both the 2nd order upwind and the central difference schemes t
small amplitude fluctuations. While the amplitudes in both cases are small compared
the mean value, the central difference scheme has a larger fluctuating amplitude and sr
wavelength (on the grid size scale) compared with that based on the 2nd order up
scheme. Figure 4(b) shows the variations of steady state density @lahg= 0.9084.
Again, the central difference based solution has a larger amplitude oscillation and
wavelength of the oscillation is on the grid scale. Figure 4(c) shows the variations of ste
state densityp (r) — p(r1), along the -direction. The reference density is taken fromar;.
The analytical solution fop (r) — p(r1) is given by Eq. (22). For the central difference base
solution, a large grid-scale oscillation in thalirection is observed. Hence, the referenc
density is taken from the average value air; and the first grid away from the inner wall.
Noticing that the density variation based on the 2nd order upwind scheme agrees quite
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FIG. 4. \Variations of steady state solutions in cylindrical Couette flow. (a) Tangential velocity &leng
y=0.9084; (b) density along at y=0.9084; (c) density along the-direction. The reference density is taken
fromr =r;. For the central difference case, the reference density is taken from the average and the next
grid in the flow field. Mixed denotes the use@ff;"/36)|cenr and (3" /1) |2up IN Eq. (15).
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FIG. 4—Continued

with the exact solution, it is instructive to see if changi@gd,"/9n)|centr to (3F"/91)|2up
while keepingdf;" /a6 in the central difference form in Eq. (15) could eliminate the gric
scale oscillation in the-direction. The result based on the mixed difference scheme for
advection term is also shown in Fig. 4(c). It is seen that it agrees well with the analyt
solution. This example indicates that the advection terms in each direction may be sepal
approximated to achieve satisfactory results in using FDLBM. This feature will be explo
further when solving the external flow over a circular cylinder.

3.3. Steady Flow over a Flat Plate

Flow over a flat plate of finite length,, placed parallel to the free stream, is considere
next (see Fig. 5). Because of the simplicity in the geometry, the standard LBGK appro
Eqg. (4), can be used to obtain the solution to the flow field. It needs to be pointed ot
the outset that since grid stretching can be applied in the FDLBM, flow over a flat plat

Y

FIG.5. Sketch for flow over a stack of flat plates.
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an unbounded domain can be handled. In order to compare the results using the sta
LBGK approach, a periodic condition is imposed in fhdirection aty=+H to reduce
the computational effort in using LBGK. In order to assess the performance of FDLBM :
LBGK procedures meaningfully, all computations are made on a grid system consistin
100 intervals in thex-direction and 50 in thg-direction.

In the FDLBM for this flow, the following coordinate transformation frory ) to (£, n)
inwhich0<¢ <1,0<n<1isapplied:

2.\ &P _ 1

Z:_l—i_(l_T)W, 0<&<é (22a)
) 1\ 05—¢

Z= —c:tan 1{tan<cg> 05 Eo} , E9<£&<0.5. (22b)

This transforms & £ < 0.5 into —z,, <z<0. A symmetry condition is then utilized for
z> 0. The relation betweex andé¢ is established through

x/L = (z—1)/2. (23)

The parametez,,, determines the extent of the domain in #adirection. Afterz,,, &, and
B are specified as input; is determined by requiring the derivatige/dé to be continuous
até = &. In they-direction, the following is used

y Hes-1

L Lern—1"

The boundary conditions are described as follows. Onthe symmetry line @t(jy = 2),
a certain symmetry condition holds for the distribution functidiis so that thef;’s at
y=—Ay (jy=1) are obtained as

(24)

fo(jx, 1) = fo(jx, 3), fi(jx, D = f1(jx, 3), f2(jx, 1) = fg(jx, 3)
f3(jX,1) = f7(jx93)v f4(jX71) = fﬁ(jx93)ﬂ f5(jx71): f5(jX,3) (25)
fo(jx, 1) = fa(jx, 3), f2(jx, 1) = f3(jx, 3), fe(jx, 1) = f2(jx, 3)

for x > 0 andx < —L. Similar symmetry conditions hold alsopt=H. At y=0, —L <
X <0, the extrapolation condition, Eq. (17), is applied while the no-slip condition for tl
velocity is imposed. At the inlet,x = 2, the uniform velocity distribution,

u(jx=2iy)=U  and w(jx =2,jy) =0, (26)
is imposed. The distribution functiorfs(jx =1, jy) are set to equaf; (jx =2, jy)
fi(jx =1, jy) = fi(jx =2, jy) (27)

because of the uniformity of the flow. At the exjx = N x — 1, a zeroth order extrapolation
is used, i.e.,

UNX—1, jy) =u(Nx—2,jy) and v(Nx-1,jy)=0. (28)
The distribution function ajx = N x is obtained using linear extrapolation
fi(Nx, jy) = 2fi(Nx =1, jy) — fi(Nx =2, jy). (29)

The conditions given by (28)—(29) allow the wake velocity to be developed.
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FIG. 6. Lattice arrangement in LBGK near the plate.

Using the same transformed coordinates, the vorticity-stream function based NS €
tions [15] are also solved and the results provide the basis for comparison with LBM b
solutions. The computational domainHs/'L =5, z,,/L =5 with L =10 lattice units. The
non-uniform grids are generated using the following parame§ges0.32, ¢: =1, which
givesp=1217473 in Eq. (22a), and: =4 in Eq. (24). In both FDLBM and — v for-
mulation, 100 intervals in the-direction and 50 intervals in thedirection are used. This
gives a total of 36 intervals on the surface of the plate Bt 10, r = 0.25 is used so that
v=1/3=0.08333 andJ =0.08333. ForRe= 100, 7t =0.025 andv = 0.008333. In both
cases, the time step ist = 0.025 which is mainly dictated by the spatial resolution.

The LBGK based solution is obtained using the standard streaming-collision proce
with AX=Ay=At=1. ForRe=10, r =0.75 is used so that= (2t — 1)/6 =0.08333
andU =0.08333forL = 10. ForRe= 100, r = 0.55sothat =0.008333 and) = 0.08333.
The solid wall is placed halfway between lattices (grids) indicateghby 1 andjy =2, as
shown in Fig. 6. A standard bounce-back condition for ffi€[11, 12] on the plate is im-
plemented. Away from the plate, the symmetry conditions are enforced in a manner sir
to Eq. (25) except thgty = 3isreplaced byy =2 in aform such as,(jx, 1) = f3(jx, 2).
One hundred intervals in the-direction and 50 intervals in the-direction are used in
LBGK solution. Sincel. =10, there are only 10 lattices (grids) on the plate. The inlet al
exit of the computational domain arexatl = —6 and 4 so thatx = 1 with 100 intervals
in the x-direction.

Figure 7(a) compares the centerline velocities from three solutions based-oi
formulation, FDLBM, and LBGK aRe=10. The centerline velocity in LBGK is obtained
using extrapolation fronjy = 2 andjy = 3 together with the symmetry condition. Overall,
three solutions agree very well in both upstream and downstream. Because the grid stre
is applied near the leading edge and the trailing edge in FDLBM while a uniform gric
used in LBGK, FDLBM based solution agrees with the- v based solution better than
the LBGK solution near the leading edge, as shown in the inset of Fig. 7(a). Figure
compares the velocity profiles in the middle of the platéy, x/L =—0.5). Since the
singularity has little effect at/L = 0.5, all three solutions agree well in regions near th
wall and near the symmetry line. Figure 7(c) compares the wall vortitifpJ )(du/ay)
along the plate from these three solutions. It is seen that LBGK solution agrees well \
thew — ¢ based solution on almost all of the grids. Near the leading and trailing edges,
resolution in LBGK is insufficient to observe a rapid rise in the vorticity. The FDLBM bas
solution for the wall vorticity exhibits an oscillatory behavior near the leading and traili
edges. A closer examination of the flow field reveals that the oscillation in velocity, he
vorticity, is associated with a rapid variation in densityiear the edges. Figure 8 shows
the variation ofp in the x-direction near the plate for bofRe= 10 andRe=100. In the
near incompressible flow limit, the density variation is viewed as the pressure variation.



440 MEI AND SHYY

Re=10

3 4 5
b
5 L 1 L L 1
Re=10 ° oy p
—— FDLBM X
7 LBGK ! N
0,8 2 1 L L i L i 1 " L
{yL L P
0.7 - b

1.2

FIG. 7. (a) Centerline wake velocity &= 10 from three solutions. (b) Velocity profile in the middle of the
plate atRe=10. (c) Surface vorticity on the plate é=10.
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FIG. 7—Continued

oscillation in p along thex-direction results from the singularity in the boundary conditio
near the edges. In LBGK, the plate is located halfway between the lattices (see Fig.
that the density ajy =2 is much less singular as the grid is off the plate. Indhe
formulation, the pressure is decoupled from the primary variablehile the velocity is
evaluated by taking derivatives ¢f. The fact that the LBGK has a better agreement fc

1.24 . 1 : .

1.23

1.22 7

1.21 1

1.20 1

1.19

1.18 " T T T
-2 -1 0 1

FIG. 8. Density variations from FDLBM on the symmetry axis and plateeat 10 and 100.
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wall vorticity with that based on the — y formulation is thus attributed to the way the
grids are arranged.

Figure 9(a) compares the centerline velocities based on three solutiBes-at00. All
solutions are based on 10050 grids. Due to insufficient resolution near the plate i
LBGK, a noticeable difference im(x) is observed between LBGK based and- 1 based
solutions in both upstream and downstream regions. Figure 9(b) shows velocity profiles
near the plateY/L < 0.5) atx/L =—0.95, —0.5, and—0.05 from these three solutions.
Reasonable agreement is observed between FDLBMang based solutions. Again, due
to insufficient resolution4y/L = 0.1) at higher Reynolds number, the velocity profile nez
the leading edge in LBGK exhibits unphysical oscillation. If the standard LBGK proced
is to be used for flow problems with such kind of singularities at higher Reynolds numl
much better resolution should be used.

3.4. Steady Flow over a Circular Cylinder

Flow over a circular cylinder (Fig. 10) is most conveniently carried out in polar coor
nates. In LBGK procedure with square lattice, the cylindrical surface is only approxima
described. Due to the use of the uniform grid, it is impractical to compute an unboun
flow over the cylinder. Hence comparisons for the flow field will be made between
w — ¢ based solutions and FDLBM based solution.

In applying FDLBM for the flow field, the following coordinate stretching similar tc
Eqg. (19) is used,

Fr=r1+ (foo — rl){l - %tan’l[(l —n) tan(ﬂ)]}- (30)

The cylinder radius; = 10 is used. To examine the effect of the domain size on the so
tion, two values of the ratio,,/r; (100 and 1000) are used. In the— ¢ formulation, the
same coordinate stretching is implemented witk= 1. Uniform grids in thed-direction
are adopted in both solution procedures. Indhe y formulation using finite difference
discretization, the second order upwind scheme is applied in both #ed6-directions.
In the FDLBM the second order upwind is applied to thdirection only, since the cen-
tral difference for the advection term in tiledirection does not result in any unphysical
oscillation.

Figure 11(a) compares the dimensionless surface vorticity on the cylinder betweer
o — ¥ based solution and FDLBM based solutionRe¢=10. In both computations,
r'e/r1=100 ~1=0.65, with 128 and 64 intervals in the and 6-directions, respec-
tively. In FDLBM, T = 0.4, U = 0.0667. Since the vorticity is a near field quantity, itis see
that agreement between the two solutions is very good in the near field on the same co
tational domain with the same grid resolutions. Figure 11(b) compares the wall vorticit)
the present solution with that given by Fornberg [7] for steady fldReat 100. The present
FDLBM solution used 256 and 128 intervals in theand6-directions, respectively, for
Re=100 witht =0.04, U =0.0667. The steady state solution is obtained without vorte
shedding since no artificial asymmetry in the initial condition was introduced. Again,
agreement is reasonable.

Figure 12 compares the profiles of tkecomponent velocity at =0 atRe=10. Two
grid systems are used in FDLBM: i), /r; =100 andg8~* = 0.65; (ii) r.,/r; = 1000 and
B~1=0.645with (128, 64) grid intervals im (6). In thew — v formulation, three sets of so-
lutions are obtained: (i), /r1 = 100, B~ = 0.65 with (128, 64) intervals; (i), /r1 = 1000
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FIG. 9. (a) Comparison of the centerline wake velocity from three solutions. (b) Comparison of the velo
profiles on the plate based on three solutiorReat 100.
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(6=0)

FIG. 10. Sketch of flow over a circular cylinder.

and 1 =0.645 with (128, 64) intervals; (iiif.,/r1 = 1000 ands—! = 0.645 with (128,
128) intervals. Theu-velocity profiles based on the — v formulation obtained with
l/r1=710000n12& 128 grids are virtually identical to that on the 1284 grid fory/r —
1<10; so only one is presented. It is observed that FDLBM solution on either grid agr
very well with thew —  based solution obtained on 128128 grids and,/r; = 1000.

For flows in an unbounded domain, itis important to examine the behavior and accura
FDLBM solution in the far field. Figure 13(a) shows the wake centerline velocity obtain
from two solutions on various grids in the regionrgf, < 100. For the far field, the best
resolution is they — ¢ based solution with.,/r; = 1000 on a 128« 128 grid. This grid
system extends 1000 radii downstream and has a better resolutiordirdibection so that
the narrow wake (whose width scales wittw/U)¥/2 [17]) is better resolved than other
grid systems used here. In general, if the wake is not sufficiently resolved, the vorti
in the wake decays more rapidly (in most cases exponentially) than algebraically in
x-direction so that the velocity recovery to the free stream value is faster. The soluti
based om,,/r1 = 100 are obviously affected by the boundary condition near .. Of the
two solutions obtained on,,/r; = 1000 and 128« 64 grids, the FDLBM-based solution
appears to be better than the- ¢ based solution on the same grid. Figure 13(b) shows t
decay of wake velocity inthe formof2 u/U inx/r; —1 < 1000. The decay should follow
anx~Y2 asymptotic behavior. It is clear that the FDLBM-based solutiongyr; = 1000
and 128x 64 grids has a slightly larger region exhibiting this asymptotic behavior than
o — ¥-based solution on the same grid system.

The length of the separation bublile) and the separation anglésare also obtained
using FDLBM on the same grid (with 128 and 64 intervals in thend 6-directions).
They are(L/ry, 6) = (0.498 30.0°), (1.804, 42.1), and (4.38, 51.2°) for Re= 10, 20, and
40. The present results compare reasonably well with those reported by He and Dc
[10] using interpolation supplemented LBM with finer gridk:/€1, 0) = (0.474, 26.89°),
(1.842 42.96°), and (4.49, 5384°) for Re= 10, 20, and 40.

Direct comparison of the computational efficiency between FDLBM and the conventio
CFD method, such as finite difference, requires careful implementation of both method
the same physical problems on the same machine. Some related information of the |
and the NS solvers on parallel computation can be found in Maial.[14] and in Shyy
et al.[19], respectively. However, many programming and unreported factors make a di
comparison between these approaches difficult. More work will be required in this reg
Based on the available information, it appears that the present approach is competiti
similar approaches. For example, He and Doolen [10] reported thREferl0 and 20, the
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FIG. 11. Comparison of the surface vorticity on the cylinder. Ra}= 10; (b) Re= 100.
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FIG. 12. Comparison of thex-component velocity ak =0 between two solutions on various grids for
flow over a cylinder.

time step used was 0.0025 timeg ofU (r; =40 lattice unit andJ = 0.1). In our test case
usingU =0.1, the time step was 0.002 timesr@f U and computations were stable. On &
DEC alpha Station with a single processor and a clock speed of 256 MHz, each time
takes about 0.058 s on 65129 grid points. In the interpolation supplemented LBM, th
extra work is in the second order interpolation in comparison with the classical LBGK.
the present case, the extra work is in the evaluation of the advective term. The amou
work is comparable between the two approaches [13].

4. SUMMARY AND CONCLUSIONS

The finite difference-based lattice Boltzmann method (FDLBM) suggested bgtGdo
[3] is extended to curvilinear coordinates with non-uniform grids. The geometry of cun
boundaries is preserved in body-fitted coordinates. The non-uniform grids allow the
of a much larger computational domain to minimize the effect of the outflow bound:
condition. A single step method, instead of the predictor-corrector procedure as used ir
et al.[3], is implemented. The relaxation term in the transport equation for the distribut
function f;’s is treated semi-implicitly to improve the stability while the procedure for th
evaluation off;’s remains explicit. Detailed examinations of various flows (impulsivel
started cylindrical Couette flow, steady state cylindrical Couette flow, steady flow over
plates, and steady flow over a circular cylinder) are carried out.

The extrapolation based boundary condition for the distribution fundtisron a solid
wall [5] is extended to curvilinear coordinates. Results based on this treatment agree
with either analytical solutions or results based on other numerical methods. The us
central difference discretization for the advection terms in the transport equatiofisfor
typically results in wiggles on the grid scale in the solution which can lead to numeri
instability. The second order upwind difference for the advection term should then be
to eliminate these wiggles. For the first time, it is demonstrated that the Lattice Boltzm
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(a) Comparison of the wake centerline velocityxijr; <100 between two solutions on various
grids. (b) Decay of the wake centerline velocity based on two solutions obtained with various grids.
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method can capture the far wake flow field accurately by using non-uniform grids. Fa
able results obtained using FDLBM in curvilinear coordinates indicate that the metho
potentially capable of solving finite Reynolds number flow problems in complex geometr
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